The minimal number with a given number of divisors

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The minimal number with a given number of divisors

A number n is said to be ordinary if the smallest number with exactly n divisors is p q1−1 1 · · · p qa−1 a where q1 · · · qa is the prime factorization of n and q1 ≥ . . . ≥ qa (and where pk denotes the k-th prime). We show here that all square–free numbers are ordinary and that the set of ordinary numbers has natural density one.

متن کامل

A remark on the means of the number of divisors

‎We obtain the asymptotic expansion of the sequence with general term $frac{A_n}{G_n}$‎, ‎where $A_n$ and $G_n$ are the arithmetic and geometric means of the numbers $d(1),d(2),dots,d(n)$‎, ‎with $d(n)$ denoting the number of positive divisors of $n$‎. ‎Also‎, ‎we obtain some explicit bounds concerning $G_n$ and $frac{A_n}{G_n}$.

متن کامل

On the Number of Minimal Surfaces with a given Boundary

In [TT78], Tomi and Tromba used degree theory to solve a longstanding problem about the existence of minimal surfaces with a prescribed boundary: they proved that every smooth, embedded curve on the boundary of a convex subset of R must bound an embedded minimal disk. Indeed, they proved that a generic such curve must bound an odd number of minimal embedded disks. White [Whi89] generalized thei...

متن کامل

The Minimal Number of Subtrees with a Given Degree Sequence

In this paper, we investigate the structures of extremal trees which have the minimal number of subtrees in the set of all trees with a given degree sequence. In particular, the extremal trees must be caterpillar and but in general not unique. Moreover, all extremal trees with a given degree sequence π = (d1, . . . , d5, 1, . . . , 1) have been characterized.

متن کامل

a remark on the means of the number of divisors

‎we obtain the asymptotic expansion of the sequence with general term $frac{a_n}{g_n}$‎, ‎where $a_n$ and $g_n$ are the arithmetic and geometric means of the numbers $d(1),d(2),dots,d(n)$‎, ‎with $d(n)$ denoting the number of positive divisors of $n$‎. ‎also‎, ‎we obtain some explicit bounds concerning $g_n$ and $frac{a_n}{g_n}$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2006

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2005.04.004